# a-SiGe - Stabilized Performance and Deposition Rate

- 1. Silane instead of disilane at high rate
- 2. Higher temperature less germanium
- 3. Grading optimized for higher rate deposited material



#### From Disilane to Silane



# V<sub>oc</sub> vs. Ge, H content

Substrate Temperature



Adapted from Terakura, PhD Thesis

#### Germanium content



# Powder decreases at higher T<sub>s</sub>



★ Less powder implies more stable a-SiGe:H



# Higher T<sub>s</sub>- Less Ge

| Sample   | State   | V <sub>oc</sub> | FF    | J <sub>sc</sub>       | P <sub>max</sub>      |
|----------|---------|-----------------|-------|-----------------------|-----------------------|
|          |         | (V)             |       | (mA/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| 9890 LC1 | Std.    | 0.601           | 0.577 | 7.36                  | 2.55                  |
| 9887 LC1 | Higher  | 0.59            | 0.584 | 7.71                  | 2.66                  |
| 9904 LC1 | Highest | 0.613           | 0.598 | 7.44                  | 2.73                  |

- ★ Increasing the temperature reduces the hydrogen content and less germanium is required to obtain the same V<sub>oc</sub>
- ★ The initial performance improves and stability is expected to be better



### From Disilane to Silane

| Sample   | State   | V <sub>oc</sub> | FF    | Jsc                   | P <sub>max</sub>      |
|----------|---------|-----------------|-------|-----------------------|-----------------------|
|          |         | (V)             |       | (mA/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| Disilane |         |                 |       |                       |                       |
| 8364 LC1 | initial | 0.595           | 0.644 | 8.09                  | 3.10                  |
|          | 1012 h  | 0.565           | 0.581 | 7.80                  | 2.60                  |
| Silane   |         |                 |       |                       |                       |
| 9917 LC1 | Initial | 0.594           | 0.583 | 7.79                  | 2.70                  |
|          | 1008 h  | 0.571           | 0.514 | 7.44                  | 2.18                  |

- \*Bottom cells deposited using 'production constraints' (high rate, etc.)
- ★ Performance of bottom cell with silane not quite as good as disilane (84%)



## Improved Germane Grading

| Sample    | State   | V <sub>oc</sub> | FF    | Jsc                   | P <sub>max</sub>      |
|-----------|---------|-----------------|-------|-----------------------|-----------------------|
|           |         | (V)             |       | (mA/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| Standard  |         |                 |       |                       |                       |
| 9917 LC1  | Initial | 0.594           | 0.583 | 7.79                  | 2.70                  |
|           | 1008 h  | 0.571           | 0.514 | 7.44                  | 2.18                  |
| Grading 1 |         |                 |       |                       |                       |
| 10044 LC1 | Initial | 0.594           | 0.645 | 7.75                  | 2.97                  |
|           | 1000 h  | 0.564           | 0.55  | 7.36                  | 2.28                  |
| Grading 2 |         |                 |       |                       |                       |
| 10058 LC1 | Initial | 0.598           | 0.649 | 7.73                  | 3.00                  |
|           | 1000 h  | 0.566           | 0.566 | 7.32                  | 2.35                  |

- ★ Improved performance with Ge grading adapted to higher rate bottom cell
- \* Performance is 90% of that with disilane



### Less powder at low Ge/Si



**★** Sweet spot at low germane fraction



## High Rate Middle Cell

| Sample            | State   | V <sub>oc</sub> | FF    | Jsc                   | P <sub>max</sub>      |
|-------------------|---------|-----------------|-------|-----------------------|-----------------------|
|                   |         | (V)             |       | (mA/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) |
| Disilane          |         |                 |       |                       |                       |
| 8316 B0           | Initial | 0.718           | 0.697 | 7.70                  | 3.85                  |
|                   | 1055h   | 0.664           | 0.598 | 7.22                  | 2.87                  |
| Silane -standard  |         |                 |       |                       |                       |
| 9941 LC1          | Initial | 0.702           | 0.678 | 7.37                  | 3.51                  |
|                   | 1008h   | 0.648           | 0.571 | 7.08                  | 2.62                  |
| Silane -grading 1 |         |                 |       |                       |                       |
| 10049 LC1         | Initial | 0.691           | 0.694 | 7.58                  | 3.64                  |
|                   | 1000h   | 0.645           | 0.586 | 7.29                  | 2.75                  |
| Silane -grading 2 |         |                 |       |                       |                       |
| 10046 LC1         | Initial | 0.685           | 0.704 | 7.74                  | 3.73                  |
|                   | 1000h   | 0.639           | 0.584 | 7.43                  | 2.77                  |

\* The middle cell also improves to 97% of that with disilane



#### **Conclusions**

- ★We have improved the stable, total area performance of the high rate bottom cell from 2.18 to 2.35 mW/cm²
- **★The middle cell has been improved** from 2.62 to 2.77 mW/cm<sup>2</sup>
- \*Higher temperature, less germanium and grading adapted to higher rate deposited material have been used.

